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Transonic Flutter Simulations Using
an Implicit Aeroelastic Solver
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Flutter computations are presented for the AGARD 445.6 standard aeroelastic wing con� guration using a fully
implicit, aeroelastic Navier–Stokes solver coupled to a general, linear, second-order structural solver. This solution
technique realizes implicit coupling between the � uids and structures using a subiteration approach. Results are
presented for two Mach numbers, M 1 = 0:96 and 1.141. The computed � utter predictions are compared with
experimental data and with previous Navier–Stokes computations for the same case. Predictions of the � utter
point for the M1 = 0:96 case agree well with experimental data. At the higher Mach number, M 1 = 1:141, the
present computations overpredict the � utter point but are consistent with other computations for the same case.
The sensitivity of computed solutions to grid resolution, the number of modes used in the structural solver, and
transition location is investigated. A comparison of computationsusing a standard second-order accurate central-
difference scheme and a third-order upwind-biased scheme is also made.

Introduction

A EROELASTICITY is the interactionbetween a � exible struc-
tureand the � owthat surroundsit.All � ightvehiclesare subject

to aeroelastic effects, and for many, their performance is limited by
adverseaeroelasticinteractions.Future aircraftdesignwould bene� t
from a more comprehensive integration of both positive and nega-
tive aeroelasticeffects.Aeroelasticsimulationpromisesto be a more
timely and cost effectivemethod of achieving this than wind-tunnel
or � ight testing.The challengebecomes one of developinga robust,
affordable, and accurate computational aeroelasticity capability.

Over the past 20 years, great advances have been made in the
ability to model accurately and ef� ciently aerodynamic � ows by
computing the Euler or Navier–Stokes equations.Recently, a num-
ber of researchers have coupled three-dimensional Euler/Navier–
Stokes solvers with structural models1 ¡ 5 to perform both static and
dynamicaeroelasticsimulations.All of these examplesuse a closely
coupled but lagged strategy where the � uid and structure equations
are solvedsequentially.However,thismethodis limited to � rst-order
accuracyin time due to the lagged couplingregardlessof the tempo-
ral accuracyof the individual solvers.This type of scheme may also
lead to the spurious growth of disturbances in the � uid/structures
system due to the effects of the time lag introduced between the
� uids and structural solvers.6 Overcoming this limitation requires
implicit coupling, or synchronization,of the two solvers.

A recently developed scheme by Melville et al.,7 which uses im-
plicit solvers for the � uids and structures,achievesimplicit coupling
between the � uids and structures via subiterations. Other known
bene� ts of subiterations include the reduction of linearization and
factorizationerrors, synchronizationof lagged boundaryconditions
and turbulence models, and implicit communication between ex-
plicitly linked zones in an overset grid or parallel environment.The
� ow solver in this scheme is a three-dimensional Beam–Warming
algorithm.8 It has been used extensivelyto simulate a wide range of
unsteady � ow� elds.9 ¡ 12 Melville et al.7 and Morton et al.13 have
extended the functionality of this code to include second-order
temporal accuracy, grid deformation capability, application of the
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geometric conservation law,14 and a general, linear, second-order
structural solver. The technique has also been developed to provide
fully implicit results in an overset grid environment and on parallel
platforms.15

The purpose of the present work is to apply this scheme to the
solutionof theAGARD 445.6aeroelasticwing testcase.16 Two cases
will be computed, M 1 =0.96 and 1.141. Comparisons are made
with experimental measurements, as well as other computations
for the same conditions.3,4 The sensitivity of the solutions to grid
resolution, number of structural modes used, � ow solver, that is,
a Roe upwind-biased scheme vs central differencing with added
dissipation, and transition location will also be investigated.

Governing Equations
Aerodynamic Governing Equations

The aerodynamic governing equations are the unsteady, com-
pressible, three-dimensional Navier–Stokes equations written in
nondimensional, strong-conservationlaw form17 employing a gen-
eral time-dependent transformation. The resulting system of gov-
erning equations is expressed as
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With this formulation, the vector of dependent variables Û is given
as

Û = (1/ J )U = (1/ J )[q q u q v q w q E]T (2)

All variables have been normalized by the appropriatecombination
of freestream density, velocity, and a characteristic length. Suther-
land’s law for the molecular viscosity coef� cient l and the perfect
gas relationship are also employed, and Stokes’ hypothesis for the
bulk viscosity coef� cient is assumed.

The source vector term SGCL is a term that arises in the strong
conservationlaw form for moving meshes. This term is de� ned13 as
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This term vanishes analytically (geometric conservationlaw14), but
not when discreterepresentationsof the temporal and spatialderiva-
tives are used. The most straightforwardapproachof accountingfor
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this term is to simply include it in the discrete governing equa-
tions, more accurately representing the nontransformed governing
equations.

Structural Dynamic Governing Equations

In general the second-order, linear structural equations coupled
with the aerodynamic � ow solver can be expressed as

Mq̈ + D Çq + K q = U T Fa (4)

where q , M , D, and K are displacement, mass, damping, and stiff-
ness. Fa is the vector of aerodynamicforces, and U T is the transfor-
mation that maps these forces into the structural system. This equa-
tion can be written as a � rst-order system by de� ning S =[q Çq]T :

I 0

0 M
ÇS +

0 ¡ I

K D
S =

0

U T Fa

(5)

Numerical Procedure
Solutions to Eq. (1) are obtained numerically using the implicit

approximately factored � nite difference algorithm of Beam and
Warming,8 employing a Newton-like subiterationprocedure.18 The
numerical algorithm is obtained from Eq. (1) by utilizing either a
two- or three-pointbackwardtime differencingand linearizingabout
the solution at subiteration level p. First- or second-order temporal
accuracy is obtained in this iterative approach by specifying either
u =0 or u = 1

2 , respectively, in Eq. (6). The numerical algorithm is
written in approximately factored, delta form as
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where

u i = 1/ (1 + u ), D U = U p + 1 ¡ U p (7)

and for p =1, then U p =U n .
Here U p is the subiteration approximation to U n + 1 so that as

p ! 1 , thenU p ! U n + 1. Note thatwith this subiterationapproach
the right-hand side of Eq. (6) represents the numerical approxima-
tion to the governing equation, whereas the left-hand side vanishes
as p ! 1 . The left-handside, then,may be modi� ed without lossof
formal accuracy provided a suf� cient number of subiterates is em-
ployed.In particular,a time stepon the left-handside of the equation,
D ts , may be chosen independently from the physical time step D t
on the right-hand side, thereby enhancing stability. Furthermore,
the right-hand side of Eq. (6) can be modi� ed to include a higher-
order, upwind-biasedalgorithm [Roe scheme (see Ref. 19)], lagged
boundary conditions or lagged k–² turbulence modeling without
destroying the implicit nature of the algorithm.

Left-hand-side ef� ciency improvements can also be implemen-
ted. The numerical procedure has been modi� ed to include diago-
nalization, following the approach of Ref. 20. Although the diag-
onalized form of the alternating direction implicit scheme is only
� rst-order time accurate, when coupled with subiterations, higher-
order time accuracy may be recovered.13 The numerical scheme
reverts to the standard � rst-order Beam–Warming procedure for
u =0, D ts = D t , and p =1.

In Eq. (6), all spatial derivatives are approximated by second-
order accurate central differences, and common forms of both im-
plicit and explicit nonlinear dissipation21 are employed to preserve
numerical stability. The temporal metric derivatives are discretized
in a manner consistentwith the temporal derivativeof the conserved
variables in Eq. (6).

The subiterationformulation can also be applied to the structural
equations [Eq. (5)]. The resulting scheme is
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where c = (1 + u ) / D ts . Because the structural equations are also
cast in an iterativeform, as p ! 1 a fully implicitcouplingbetween
the aerodynamicmodel and the structural model is obtained.

Grid Deformation Approach
The grid deformationscheme employed was developed in Ref. 7.

This algebraic method maintains the grid quality of the initial mesh
near deforming surfaces under arbitrary, moderate de� ections and
rotations. In addition, a speci� ed region in the far � eld may be held
� xed. This is advantageous when this deformation scheme is used
in an overset grid context becausethe grid overlap regions, and their
connectivities,will remain unchanged.

Given a starting grid x̂ and a surface displacement (assumed to
be at k =1 here), the translationand rotation of each surface node is
computed from the de� ected aerodynamic surface x̂ 0

i j1 . The trans-
lational displacements are

D x̂i j1 = x̂ 0
i j1 ¡ x̂i j1 (9)

whereas the rotational displacement at the node can be found by
forming an orthonormal basis for the original surface position and
the perturbed surface, respectively,

[E] = [ê1 ê2 ê3], [E 0 ] = [ê 0
1 ê 0

2 ê 0
3] (10)

The surface rotation matrix can be de� ned as

[R] = [E 0 ][E]T (11)

Each normalgrid line is thenmoved in a rigid-bodyway accordingto
the displacement of the surface node to form a reference, displaced
grid line de� ned by

r̂i, j,k = x̂i, j,k + D x̂i j1 + [R]( x̂i, j,k ¡ x̂i j1) (12)

The new grid line is constructed by blending the reference grid line
and the old grid line. The blending choice is arbitrary but is best
done in arclength space rather than in computational space. The
arclength for each node is de� ned,

si jk =
k

l = 2

j x̂i jl ¡ x̂i jl ¡ 1 j (13)

where si j1 =0. A cubic blending with zero slope at the endpoints
assures both that wall orthogonality is maintained and that the grid
transitions smoothly in the far � eld. This can be written as
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where kmax is the last node along each normal line that is allowed to
de� ect. Finally, the new positionof each grid point can be calculated
by applying the blending function to the reference, displaced grid
and to the original grid:

x̂ 0
i j k = bi jk x̂i j k + (1 ¡ bi jk )r̂i jk (15)

AGARD 445.6 Wing Model
The con� gurationto be computedis the AGARD 445.6weakened

wing model.16 This aeroelastic wing model is currently being used
to evaluate existing methods for computing aeroelastic problems.
The geometry consists of a wing with an aspect ratio, AR = 1.6525,
a taper ratio of 0.6576, a quarter-chordsweepback angle of 45 deg,
and a NACA 65A004 airfoil section in the streamwise direction.
Experimental � utter results and a structural model for the wing
using four mode shapes are presented in Ref. 16.

A series of three grids have been developed for this geometry.
For each successive mesh, re� nement in all three directions is per-
formed. The � nest grid cuts by half the spacing used on the coarsest
grid. Details of the point distributions for each mesh are given in
Table 1, where i is around the body, j is in the spanwise direction,
and k is normal to the body. The grids are of C–H type, and Fig. 1
shows a view of the wing surface geometry.The grid extendedeight
root chord lengths downstream of the trailing edge, six root chords
to the upper, lower, and upstream boundaries, and one semispan
from the tip.

Reference 16 provided a structural model for the AGARD 445.6
wing that consisted of the � rst four natural vibration modes. In a
recent work by Kolonay,22 a new structural model of the AGARD
445.6wing was developed.This model containedthe � rst 14 natural
vibrationmodes with the � rst 4 modal frequenciesbeing matchedas
nearly as possibleto the experimentalfrequencies.The orthonormal
modeshapesand thegeneralizedstiffnessfrom this modelwereused
for the present computations.For all cases computed, it is assumed
that no structural damping is present. To match the given mode
shapes to the correspondingaerodynamic grids a specialized inter-
polation program (FASIT)23 was employed. Both thin-plate spline
and multiquadric–biharmonic interpolation methods were consid-
ered and were found to produce very similar mode shapes on the
medium mesh. The thin-plate spline interpolation method is used
for all subsequent results.

Table 1 Mesh distributions

Total Wing surface

Grid i j k i j

Coarse 131 41 51 91 26
Medium 197 61 75 137 39
Fine 261 81 101 181 51

Fig. 1 C–H grid structure for the AGARD 445.6 wing.

Aerodynamic Boundary Conditions
The aerodynamicboundary conditions for the AGARD wing are

as follows. At solid surfaces, the no-slip condition is applied re-
quiring that the � uid velocity at the wing surface match the surface
velocity.The remaining two conditionsare the adiabaticwall condi-
tion and @p / @n = ¡ q ab ¢ n, where ab is the accelerationof the body
and n is a vector normal to the surface. A quasi-one-dimensional
characteristic boundary condition was applied in the far � eld ex-
cept at the downstream and symmetry planes, where zeroth-order
extrapolation is used. In the wake regions downstream of the wing
and outboard of the tip, the upper and lower wake surfaces were
assigned the average of the top and bottom adjoining nodes.

Results
Dynamic computations of wing � utter are carried out for the

AGARD wing for two Mach numbers, M 1 = 0.96 and 1.141. Each
Mach number case is run for a series of dynamic pressures to
determine the � utter point. As the dynamic pressure is varied,
the freestream density and Mach number are held � xed, and the
Reynolds number is allowed to vary to provide a consistent set of
conditions.This small variationin Reynoldsnumbershouldnothave
a signi� cant effect on the � ow solutions.3

Reynolds numbers (based on the wing root chord) for the
two cases are in the range from Re =6.145 £ 105 to 6.735 £ 105

for M 1 =0.96 and from Re = 8.57 £ 105 to 8.79 £ 105 for
M 1 =1.141. In each case the � ow is assumed turbulent, and the
Baldwin–Lomax24 turbulencemodel is implemented to account for
turbulenceeffects.Because no informationon the locationof transi-
tion is provided in the experiment, the � ow is assumed to transition
at the leading edge for all computations except where otherwise
indicated.

A nondimensionaltime step D t =0.05 is used for all of the � utter
computations.The maximum allowable time step is determined by
stability considerationswith the � ow solver and not from the struc-
tural solver. This time step allowed for approximately730–830 time
steps per cycle of structural oscillation. All simulations are started
from a steady-state, rigid, nonlifting condition. A small velocity
perturbation is given to the � rst bending mode, and all other modes
are excited from this perturbation.

M 1 = 0:96

Figure 2 shows the response of the � rst four modes for the
M 1 =0.96 case on the medium mesh for a � utter condition
q / qe =1.2, where qe =61.3 lbf/ft2 is the experimental dynamic
pressure for � utter. The � rst bending mode appears to be the domi-
nant mode with only the second mode showingany signi� cant effect
of the impulse applied to the � rst mode. The growth or decay of the
� rst bending mode is analyzed, therefore, to determine the � utter

Fig. 2 Dynamic response of � rst four modes: M 1 = 0.96 and q/qe =1.2.
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Fig. 3 Effect of grid resolution on the rigid-surface pressure coef� cient, M1 = 0.96.

Fig. 4 Effect of grid resolution on mode 1 response: M1 = 0.96 and
q/qe = 1.1.

location. It was found by running one solution for a signi� cantly
longer period of time that only a few cycles of oscillation were re-
quired to determine whether the solution was growing or decaying
for this case. This is not true for all Mach numbers, however, as will
be seen in the next section.

Figure 3 demonstrates the effect of grid resolution on the com-
puted surface pressures for M 1 = 0.96. Finer mesh resolution is
seen to enhance the low-pressure region over the wing. The corre-
sponding effect of mesh resolution on the time history of the � rst
bending mode is seen in Fig. 4 for q /qe =1.1. At this freestream
dynamic pressure, the oscillations are seen to be decaying on the
coarse and medium meshes and growing for the � ne mesh. This
indicates that the effect of improved mesh resolution is to reduce
the computed � utter speed for the M 1 =0.96 case, though grid
independencehas not yet been achieved.

The results of all of the computations performed for M 1 =0.96
are summarized in Fig. 5. In Fig. 5, the ampli� cation factor is de-
� ned as the ratio of the magnitude of a peak with the magnitude of
the previous peak of corresponding sign. The response frequency
is determined from the period between two successivepeaks of the
same sign. The ampli� cation factors and response frequenciesplot-
ted in Fig. 5 are obtained from the average of the values for the last
positive and negative peak. A value of ampli� cation factor greater
than 1.0 implies � utter. From Fig. 5 the effects of varying dynamic
pressure q and mesh resolution can be clearly seen. As dynamic
pressure is increased, the ampli� cation factor grows and eventually
exceeds 1.0, and the wing begins to � utter. Grid re� nement leads

Fig. 5 Dynamic pressure and frequency for � utter, M 1 = 0.96.

to a reduction in the � utter speed and the corresponding response
frequency.

The � utter points inferred from Fig. 5 are compared with other
computed results3,4 and with the experimental results16 in Table 2.
Also included in Table 2 are a correspondingset of resultscomputed
with the present scheme using the Euler equations.The � utter speed
index (FSI) is de� ned as

FSI =
U f

bs x a

p
¯l

(16)

where U f is the � utter speed, bs is half the root chord, x a is the
primary torsional frequency(second mode), and ¯l is the mass ratio.
Note that x / x a is referred to as the frequency ratio and is the ratio
of the response frequency to the primary torsional frequency. The
present viscous computations slightly overpredict the experimental
� utter speed index and frequency ratio on the coarser meshes, but
approach the experimental values with mesh re� nement. The invis-
cid results agree well with the experimental values on the coarser
meshes, but the comparison degrades with increasing mesh re� ne-
ment.The solutionson allmeshes,however,predictthe � uttervalues
as well as or better than the solutions in Refs. 3 and 4.

M 1 = 1:141

The next case computed, M 1 = 1.141, has proved much more
challenging to reproduce the reported experimental � utter beha-
vior.3,4 This case has a shock that is located outboard, on the aft
portionof the wing.The presenceof the shockand thecorresponding
shock/boundary-layerinteractionmake this a more interesting � ow
conditionto compute.Figure6 shows the time historyof the � rst four
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modes for a dynamic pressure q / qe = 1.8, where qe = 105.3 lbf/ft2.
As in the M 1 = 0.96 case, the � rst mode appears to be the dominant
mode, though the higher modes appear to play more of a role for
M 1 =1.141. For this case, it is also necessary to run signi� cantly
more cycles than for M 1 = 0.96 before a clear determination of
the response is made. In some instances, the amplitude of the � rst
few cycles computed appeared to be growing though ultimately the
solution was damped. One needs to be cautious, therefore, in trying
to projecta result in this situationusingonlya fewcyclesof response.

The effect of grid resolution on the surface pressure coef� cient
for the static initial condition is seen in Fig. 7. The most signi� cant
effect noted is a strengthening and sharpening of the shock wave
on the wing. The corresponding effect on the response of the � rst

Table 2 Flutter point results, M 1 = 0:96

Method q /qe FSI x / x a

Coarse viscous 1.15 0.333 0.383
Medium viscous 1.12 0.329 0.376
Fine viscous 1.05 0.319 0.364
Coarse inviscid 1.02 0.314 0.371
Medium inviscid 0.96 0.304 0.361
Fine inviscid 0.84 0.285 0.331
Experiment16 1.0 0.308 0.365
Reference 3 0.89 0.294 0.346
Reference 4 1.47 0.367 0.349

Fig. 6 Dynamic response of � rst four modes: M 1 = 1.141 and q/qe =
1.8.

Fig. 7 Effect of grid resolution on the rigid-surface pressure coef� cient, M 1 = 1.141.

mode is demonstrated in Fig. 8. The solution is seen to grow at a
slower rate as the mesh resolution is increased implying an increase
in the � utter speed. This trend is opposite from the situation for
M 1 =0.96.

Figure 9 summarizes the results for the viscous computations
at increasing dynamic pressures on the three meshes. Because no
computation was performed for q / qe = 1.7 on the � ne mesh, the
dashed line represents a best estimate of the shape of the curve for
this grid. Figure 9 demonstrates that the effect of grid resolution is
to increase the � utter speed and frequency for this case. A compar-
ison of the computed viscous � utter values for M 1 =1.141 with
the experimental values and Navier–Stokes computations of other
researchers is given in Table 3. The Navier–Stokes computations
are seen to overpredict the experimental � utter speed index and the
frequency ratio. Note, however, that the other computations shown
also overpredict the � utter point for this case. The current compu-
tations lie well within the range of computational results presented
by other authors.

Computations for the M 1 =1.141 case were repeated using the
Euler equations to assess viscous effects on the predicted � utter
point. The Euler results are seen to give notably higher values for
the � utter speed index and frequency ratio indicating a signi� cant
viscous in� uence on the � utter point location. This corresponds
with the trend reported in Ref. 3. The computed values of FSI and
frequency ratio are comparable to values reported for other Euler
simulations by Lee-Rausch and Batina3 and Farhat and Lesoinne.25

Fig. 8 Effect of grid resolution on mode 1 response: M1 = 1.141 and
q/qe = 1.8.
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Table 3 Flutter point results, M 1 = 1:141

Method q /qe FSI x / x a

Coarse viscous 1.69 0.530 0.591
Medium viscous 1.72 0.534 0.598
Fine viscous 1.76 0.541 0.607
Coarse inviscid 2.12 0.592 0.694
Medium inviscid 2.10 0.591 0.682
Fine inviscid 2.09 0.589 0.669
Four modes 1.77 0.542 0.613
Roe 1.78 0.544 0.604
Transition 30% c 1.75 0.539 0.616
Experiment16 1.0 0.403 0.459
Reference 3 1.61 0.506 0.521
Reference 4 2.10 0.574 0.597

Fig. 9 Dynamic pressure and frequency for � utter, M 1 = 1.141.

Gupta26 has reported Euler simulations for which the FSI and fre-
quency ratio predicted compare reasonably with the experimental
values at the M 1 = 1.141 � ow condition but are underpredicted
for lower values of Mach number. The trends observed in Gupta’s
simulations appear to be inconsistent with all of the other Euler
simulations reported here.

To investigate the sensitivity of the M 1 = 1.141 solution to var-
ious computational parameters, several limited studies were under-
takenon the coarsemesh.Lee-Rauschand Batina3 suggestthatusing
a model with a higher number of modes than the four modes used
in their study may be required at higher Mach numbers. As noted
in Fig. 6, the higher modes show more participationin the response
for the M 1 =1.141 case. The structural model used for the present
computations contained 14 modes. To understand the in� uence of
this higher mode participation,computationswere carried out using
only the � rst four modes of the model. Figure 10 shows the effect of
number of modes on the response of the � rst mode. The reduction
in the number of modes has signi� cantly reduced the amplitude and
rate of growth of the oscillations implying an increase in the � utter
speed for the computations with fewer modes. This result is con-
� rmed in Fig. 11 and Table 3, where the � utter speed and frequency
are seen to be reduced with an increase in the number of modes in
the model. The reduction is not signi� cant enough, however, to ex-
plain the discrepancies between the computations and experiment.
This result highlights the potential shortcomings of using highly
truncated modal models in certain situations.

The present aerodynamic solver has the option of using a third-
order upwind-biased Roe scheme (see Ref. 19). The effect of the
improved accuracy and shock de� nition of this scheme on the com-
puted results at M 1 = 1.141 is also investigated. A comparison of
the surface pressure coef� cient for the initial condition is given in

Fig. 10 Effect of number of modes used on mode 1 response: M1 =
1.141 and q/qe = 1.8.

Fig. 11 Effect of number of nodes on dynamicpressure and frequency
for � utter, M 1 = 1.141.

Fig. 12. A sharpening of the shock and a slight increase in the suc-
tion levels results when the Roe scheme is employed. The effect
on the � rst mode response (Fig. 13) is to reduce the amplitude and
growth rate of the oscillations.This correspondsto an increasein the
� utter speed and response frequency(Fig. 14 and Table 3), which is
consistent with the trend observed when the grid is re� ned for the
central difference scheme.

Another possible source for the difference between the exper-
iment and computation at the higher Mach number is transition.
Throughout the experiments, natural boundary-layertransition was
permitted. Therefore, the effect of transition location may play a
role that is not being modeled in any of the computations to date.
This issue has also been raised by Lee-Rausch and Batina.3 To in-
vestigate the sensitivity of the computed � utter point to transition
location, computations were performed with the Baldwin–Lomax
model turned off over the � rst 30% of the wing. Although this may
not exactly model the physical transition process that occurs, the
sensitivity of the solution to transition location may be discerned.
The computed results (Fig. 15 and Table 3) indicate a small increase
in the � utter speed and frequency response. This effect again does
not account for the discrepancy between the computations and the
reported experimental results.
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Fig. 12 Effect of Roe scheme on the rigid-surface pressure coef� cient, M1 = 1.141.

Fig. 13 Effect of Roe scheme on mode 1 response: M1 = 1.141 and
q/qe = 1.8.

Fig. 14 Effect of Roe scheme on dynamic pressure and frequency for
� utter, M 1 = 1.141.

Fig. 15 Effect of transition location on dynamic pressure and fre-
quency for � utter, M1 = 1.141.

Neither the addition of extra modes in the structural model, nor
the use of the more accurate Roe scheme (or similar grid re� ne-
ment), nor transition location have provided a complete resolution
to the discrepancies between the experiment and computations at
M 1 =1.141. Lee-Rausch and Batina3 also investigated the effects
of structural damping on the computed � ow at M 1 =1.141. The
small changes in the � utter speed (surprisingly in a destabilizing
sense) they observed with the addition of structural damping is still
not enough to account for the difference between the computations
and experiment.

Further investigationis required to determine adequately the rea-
son for the discrepancy between the experiment and computations
at M 1 = 1.141. Because most of the computations discussed can
adequatelypredict the � utter characteristicsat subsonicMach num-
bers, it seems that the structural properties of the wing are be-
ing modeled satisfactorily. The problem, therefore, appears to be
an inability to model correctly the physical processes occurring
in the � utter experiment at supersonic Mach numbers. The ex-
act cause of the problem remains dif� cult to determine because
only minimal information on the experimental � ow� eld itself is
available. As always with turbulent � ows, the choice of turbu-
lence model can be a key element in correctly simulating the � ow.
In this situation the standard Baldwin–Lomax turbulence model
may be inadequate for capturing the complex physics associated
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with the shock-wave/boundary-layer interaction that occurs. Alter-
nately, the actual physical conditions in the experiment may not be
properly represented in the computations. At the supersonic Mach
numbers, for instance, accounting for the presence of the wind-
tunnel walls may play an important role in matching the experimen-
tal � utter values. Finally, in the supersonic � ow region, signi� cant
changes in � utter speed and frequency can occur for small changes
in Mach number. Therefore, any small experimental error in Mach
number reported could lead to signi� cant differences between the
computed and experimental � utter properties.

Conclusions
This paper has presented computations using a recently devel-

oped fully implicit,aeroelasticNavier–Stokessolver.This technique
achieves implicit coupling of the � uids and structures via a subiter-
ation strategy. Flutter computationson the AGARD 445.6 standard
aeroelasticwingwereperformedfor two Machnumbers, M 1 =0.96
and 1.141.

For the M 1 = 0.96 case, the present viscous computations pre-
dict the � utter point well for all grids considered. The effect of
improved grid resolution is to reduce the � utter speed providing
better agreement between experiment and computation. Computa-
tions using an Euler solver compared well on the coarser meshes,
but the comparison degraded with mesh re� nement.

The M 1 = 1.141 case has a shock located outboard on the aft
portionof the wing. Whereas the present viscous computations sig-
ni� cantlyoverpredictthe experimental� utter point for this case, the
computations are consistent with other computational results pre-
sented for the same case. Computations for the present paper were
performed on grids signi� cantly � ner than previous works. The ef-
fect of grid re� nement on the viscous solutions was to increase
the � utter speed slightly. Euler computations for the M 1 = 1.141
case showed signi� cant differences from the viscous solutions.The
� utter speeds and frequency response were higher than the viscous
values and further from the reported experimental values. Viscous
effects are clearly playing an important role in this case.

Solutions for this case were also obtained using both 4 and 14
modes in the structural model. Although increasing the number of
modes in the structural model reduces the predicted � utter speed
at this Mach number, the reduction is not enough to account for
the discrepancies between the computations and experiment. The
computationswere repeatedusinga third-order,upwind-biasedRoe
scheme. The trends observed using the Roe scheme were consistent
with those observed when grid re� nement was performed. Finally,
the location of the computational transition location was moved
downstreamfrom the leading edge to the 30% chord location. Only
a minimal effect of this change was observed in the � utter response.
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