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Transonic Flutter Simulations Using
an Implicit Aeroelastic Solver

Raymond E. Gordnier* and Reid B. Melville'
U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7913

Flutter computations are presented for the AGARD 445.6 standard aeroelastic wing configuration using a fully
implicit, aeroelastic Navier-Stokes solver coupled to a general, linear, second-order structural solver. This solution
technique realizes implicit coupling between the fluids and structures using a subiteration approach. Results are
presented for two Mach numbers, M« =0.96 and 1.141. The computed flutter predictions are compared with
experimental data and with previous Navier-Stokes computations for the same case. Predictions of the flutter
point for the M« =0.96 case agree well with experimental data. At the higher Mach number, M« =1.141, the
present computations overpredict the flutter point but are consistent with other computations for the same case.
The sensitivity of computed solutions to grid resolution, the number of modes used in the structural solver, and
transition location is investigated. A comparison of computations using a standard second-order accurate central-
difference scheme and a third-order upwind-biased scheme is also made.

Introduction

EROELASTICITY is the interaction between a flexible struc-

ture and the flow that surroundsit. All flight vehiclesare subject
to aeroelastic effects, and for many, their performance is limited by
adverse aeroelasticinteractions.Future aircraftdesign would benefit
from a more comprehensive integration of both positive and nega-
tive aeroelasticeffects. Aeroelasticsimulationpromisesto be a more
timely and cost effective method of achieving this than wind-tunnel
or flight testing. The challenge becomes one of developinga robust,
affordable, and accurate computational aeroelasticity capability.

Over the past 20 years, great advances have been made in the
ability to model accurately and efficiently aerodynamic flows by
computing the Euler or Navier-Stokes equations. Recently, a num-
ber of researchers have coupled three-dimensional Euler/Navier-
Stokes solvers with structural models! = to perform both static and
dynamic aeroelasticsimulations. All of these examplesuse a closely
coupled but lagged strategy where the fluid and structure equations
are solved sequentially. However, this method is limited to first-order
accuracyin time due to the lagged couplingregardlessof the tempo-
ral accuracy of the individual solvers. This type of scheme may also
lead to the spurious growth of disturbances in the fluid/structures
system due to the effects of the time lag introduced between the
fluids and structural solvers.® Overcoming this limitation requires
implicit coupling, or synchronization, of the two solvers.

A recently developed scheme by Melville et al.,” which uses im-
plicitsolvers for the fluids and structures, achievesimplicit coupling
between the fluids and structures via subiterations. Other known
benefits of subiterations include the reduction of linearization and
factorizationerrors, synchronizationof lagged boundary conditions
and turbulence models, and implicit communication between ex-
plicitly linked zones in an overset grid or parallel environment. The
flow solver in this scheme is a three-dimensional Beam-Warming
algorithm ? It has been used extensivelyto simulate a wide range of
unsteady flowfields.”~'? Melville et al.” and Morton et al.'* have
extended the functionality of this code to include second-order
temporal accuracy, grid deformation capability, application of the
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geometric conservation law,'* and a general, linear, second-order
structural solver. The technique has also been developed to provide
fully implicit results in an overset grid environmentand on parallel
platforms.!3

The purpose of the present work is to apply this scheme to the
solutionofthe AGARD 445.6aeroelasticwing testcase.!® Two cases
will be computed, M, =0.96 and 1.141. Comparisons are made
with experimental measurements, as well as other computations
for the same conditions>* The sensitivity of the solutions to grid
resolution, number of structural modes used, flow solver, that is,
a Roe upwind-biased scheme vs central differencing with added
dissipation, and transition location will also be investigated.

Governing Equations

Aerodynamic Governing Equations

The aerodynamic governing equations are the unsteady, com-
pressible, three-dimensional Navier-Stokes equations written in
nondimensional, strong-conservationlaw form'” employing a gen-
eral time-dependent transformation. The resulting system of gov-
erning equations is expressed as

U . . . .
Willp-Lp)eZ(e-Le,
ot o0& Re on Re
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+—|H—-—H, ) =S
ag ( Re L) GCL
With this formulation, the vector of dependent variables U is given
as

D

U=1/NHU=1/NDlp pu )

All variables have been normalized by the appropriate combination
of freestream density, velocity, and a characteristic length. Suther-
land’s law for the molecular viscosity coefficient p and the perfect
gas relationship are also employed, and Stokes’ hypothesis for the
bulk viscosity coefficient is assumed.

The source vector term Sgcr. is a term that arises in the strong
conservationlaw form for moving meshes. This termis defined'? as

o lest (& m &
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This term vanishes analytically (geometric conservationlaw'#), but
not when discreterepresentationsof the temporal and spatial deriva-
tives are used. The most straightforwardapproach of accounting for
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this term is to simply include it in the discrete governing equa-
tions, more accurately representing the nontransformed governing
equations.

Structural Dynamic Governing Equations

In general the second-order, linear structural equations coupled
with the aerodynamic flow solver can be expressed as

Mg+ Dg+Kq =®"F, €Y

where g, M, D, and K are displacement, mass, damping, and stiff-
ness. F, is the vector of aerodynamic forces, and @7 is the transfor-
mation that maps these forces into the structural system. This equa-
tion can be written as a first-order system by defining S =[¢ ¢]":
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Numerical Procedure

Solutions to Eq. (1) are obtained numerically using the implicit
approximately factored finite difference algorithm of Beam and
Warming,® employing a Newton-like subiteration procedure.'® The
numerical algorithm is obtained from Eq. (1) by utilizing either a
two- or three-pointbackwardtime differencingand linearizingabout
the solution at subiteration level p. First- or second-order temporal
accuracy is obtained in this iterative approach by specifying either
¢=0o0r¢= é, respectively,in Eq. (6). The numerical algorithm is
written in approximately factored, delta form as

;o 3Fr 1 oF;
I+ pIAL S| — - —
aU  Re oU
;o 3G» 1 aG?
x| I+ ¢l AL S| — - —
3U  Re 3U

;o oH? 1 oH!
X[JV + ' ALS [ — - ——= ) |AU
oU  Re 3U

S (L+ U — (1 +24)U" + ¢U" !
At

V4
4 4 4 n 4 ¢
+J7VS | FP - L)+ Js,| GP - Lo
Re ' Re '
) 1
+J7V"5 G - —G? 6
(or-1)] 0

where

=—¢iAtJ{J

o' =1/(1+ ¢), AU =UP —U? (7

and for p =1, then U? =U".

Here U” is the subiteration approximation to U"*! so that as
p— oo, thenU” — U"* !, Note that with this subiterationapproach
the right-hand side of Eq. (6) represents the numerical approxima-
tion to the governing equation, whereas the left-hand side vanishes
as p— oo . The left-handside, then, may be modified withoutloss of
formal accuracy provided a sufficient number of subiterates is em-
ployed.In particular,a time step on the left-hand side of the equation,
At,, may be chosen independently from the physical time step At
on the right-hand side, thereby enhancing stability. Furthermore,
the right-hand side of Eq. (6) can be modified to include a higher-
order, upwind-biased algorithm [Roe scheme (see Ref. 19)], lagged
boundary conditions or lagged k-€ turbulence modeling without
destroying the implicit nature of the algorithm.

Left-hand-side efficiency improvements can also be implemen-
ted. The numerical procedure has been modified to include diago-
nalization, following the approach of Ref. 20. Although the diag-
onalized form of the alternating direction implicit scheme is only
first-order time accurate, when coupled with subiterations, higher-
order time accuracy may be recovered.® The numerical scheme
reverts to the standard first-order Beam-Warming procedure for
¢ =0, At, =At,and p =1.

In Eq. (6), all spatial derivatives are approximated by second-
order accurate central differences, and common forms of both im-
plicit and explicit nonlinear dissipation®! are employed to preserve
numerical stability. The temporal metric derivatives are discretized
in a manner consistent with the temporal derivative of the conserved
variablesin Eq. (6).

The subiteration formulation can also be applied to the structural
equations [Eq. (5)]. The resulting scheme is
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where y =(1 + ¢)/At,. Because the structural equations are also
castinaniterativeform,as p — oo afully implicitcouplingbetween
the aerodynamic model and the structural model is obtained.

Grid Deformation Approach

The grid deformation scheme employed was developedin Ref. 7.
This algebraic method maintains the grid quality of the initial mesh
near deforming surfaces under arbitrary, moderate deflections and
rotations. In addition, a specified region in the far field may be held
fixed. This is advantageous when this deformation scheme is used
in an overset grid context because the grid overlapregions, and their
connectivities, will remain unchanged.

Given a starting grid £ and a surface displacement (assumed to
be at k =1 here), the translationand rotation of each surface node is
computed from the deflected aerodynamic surface )?;f ,- The trans-
lational displacements are '

A%y = f,-'jl = Xij1 )

whereas the rotational displacement at the node can be found by
forming an orthonormal basis for the original surface position and
the perturbed surface, respectively,

[E]l=[é & é&s],
The surface rotation matrix can be defined as

[R] =[E'NET an

[E'T=[e, & @] (10)

Each normal gridline is thenmovedin arigid-body way accordingto
the displacement of the surface node to form a reference, displaced
grid line defined by

fl}j‘,k :)?iﬁ/}k + Ajijl + [R](fii,ji,k - jijl) (12)

The new grid line is constructed by blending the reference grid line
and the old grid line. The blending choice is arbitrary but is best
done in arclength space rather than in computational space. The
arclength for each node is defined,

k
Sijk = Z [£:0 = £iji =1l (13)
=2

where s;;; =0. A cubic blending with zero slope at the endpoints
assures both that wall orthogonality is maintained and that the grid
transitions smoothly in the far field. This can be written as

s 2 s 3
by =3 k) o Sk (14)
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where ki, is the last node along each normal line that is allowed to
deflect. Finally, the new positionof each grid point can be calculated
by applying the blending function to the reference, displaced grid
and to the original grid:

ff-’,»k =b;uXijx + (1 = biji)fij (15)

i

AGARD 445.6 Wing Model

The configurationto be computedis the AGARD 445.6 weakened
wing model.!® This aeroelastic wing model is currently being used
to evaluate existing methods for computing aeroelastic problems.
The geometry consists of a wing with an aspect ratio, R =1.6525,
a taper ratio of 0.6576, a quarter-chord sweepback angle of 45 deg,
and a NACA 65A004 airfoil section in the streamwise direction.
Experimental flutter results and a structural model for the wing
using four mode shapes are presented in Ref. 16.

A series of three grids have been developed for this geometry.
For each successive mesh, refinement in all three directions is per-
formed. The finest grid cuts by half the spacing used on the coarsest
grid. Details of the point distributions for each mesh are given in
Table 1, where i is around the body, j is in the spanwise direction,
and k is normal to the body. The grids are of C-H type, and Fig. 1
shows a view of the wing surface geometry. The grid extended eight
root chord lengths downstream of the trailing edge, six root chords
to the upper, lower, and upstream boundaries, and one semispan
from the tip.

Reference 16 provided a structural model for the AGARD 445.6
wing that consisted of the first four natural vibration modes. In a
recent work by Kolonay,?? a new structural model of the AGARD
445.6 wing was developed. This model containedthe first 14 natural
vibrationmodes with the first4 modal frequenciesbeing matched as
nearly as possibleto the experimentalfrequencies. The orthonormal
mode shapesand the generalizedstiftness from this model were used
for the present computations. For all cases computed, it is assumed
that no structural damping is present. To match the given mode
shapes to the corresponding aerodynamic grids a specialized inter-
polation program (FASIT)?* was employed. Both thin-plate spline
and multiquadric-biharmonic interpolation methods were consid-
ered and were found to produce very similar mode shapes on the
medium mesh. The thin-plate spline interpolation method is used
for all subsequentresults.

Table 1 Mesh distributions

Total Wing surface
Grid i J k i J
Coarse 131 41 51 91 26
Medium 197 61 75 137 39
Fine 261 81 101 181 51

\
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i

Fig. 1 C-H grid structure for the AGARD 445.6 wing.

Aerodynamic Boundary Conditions

The aerodynamic boundary conditions for the AGARD wing are
as follows. At solid surfaces, the no-slip condition is applied re-
quiring that the fluid velocity at the wing surface match the surface
velocity. The remaining two conditions are the adiabatic wall condi-
tionand dp/ on = — pa, - n, where a,, is the accelerationof the body
and n is a vector normal to the surface. A quasi-one-dimensiond
characteristic boundary condition was applied in the far field ex-
cept at the downstream and symmetry planes, where zeroth-order
extrapolation is used. In the wake regions downstream of the wing
and outboard of the tip, the upper and lower wake surfaces were
assigned the average of the top and bottom adjoining nodes.

Results

Dynamic computations of wing flutter are carried out for the
AGARD wing for two Mach numbers, M,, =0.96 and 1.141. Each
Mach number case is run for a series of dynamic pressures to
determine the flutter point. As the dynamic pressure is varied,
the freestream density and Mach number are held fixed, and the
Reynolds number is allowed to vary to provide a consistent set of
conditions. This small variationin Reynoldsnumber should nothave
a significant effect on the flow solutions

Reynolds numbers (based on the wing root chord) for the
two cases are in the range from Re =6.145 X 10° to 6.735 X 10°
for M, =0.96 and from Re=8.57 X10° to 8.79 X10° for
M, =1.141. In each case the flow is assumed turbulent, and the
Baldwin-Lomax** turbulence model is implemented to account for
turbulenceeffects. Because no informationon the location of transi-
tion is provided in the experiment, the flow is assumed to transition
at the leading edge for all computations except where otherwise
indicated.

A nondimensionaltime step At =0.05 is used for all of the flutter
computations. The maximum allowable time step is determined by
stability considerations with the flow solver and not from the struc-
tural solver. This time step allowed for approximately 730-830 time
steps per cycle of structural oscillation. All simulations are started
from a steady-state, rigid, nonlifting condition. A small velocity
perturbationis given to the first bending mode, and all other modes
are excited from this perturbation.

Mo =0.96

Figure 2 shows the response of the first four modes for the
M, =0.96 case on the medium mesh for a flutter condition
q/q. =1.2, where g, =61.3 Ibf/f® is the experimental dynamic
pressure for flutter. The first bending mode appears to be the domi-
nantmode with only the second mode showing any significant effect
of the impulse applied to the first mode. The growth or decay of the
first bending mode is analyzed, therefore, to determine the flutter
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Fig. 2 Dynamicresponse of first four modes: M« =0.96 and g/q, =1.2.
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Fine

Effect of grid resolution on the rigid-surface pressure coefficient, Mo, = 0.96.
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Fig. 4 Effect of grid resolution on mode 1 response: M« = 0.96 and
qlgq. =1.1.

location. It was found by running one solution for a significantly
longer period of time that only a few cycles of oscillation were re-
quired to determine whether the solution was growing or decaying
for this case. This is not true for all Mach numbers, however, as will
be seen in the next section.

Figure 3 demonstrates the effect of grid resolution on the com-
puted surface pressures for M, =0.96. Finer mesh resolution is
seen to enhance the low-pressure region over the wing. The corre-
sponding effect of mesh resolution on the time history of the first
bending mode is seen in Fig. 4 for g/q, =1.1. At this freestream
dynamic pressure, the oscillations are seen to be decaying on the
coarse and medium meshes and growing for the fine mesh. This
indicates that the effect of improved mesh resolution is to reduce
the computed flutter speed for the M, =0.96 case, though grid
independencehas not yet been achieved.

The results of all of the computations performed for M,, =0.96
are summarized in Fig. 5. In Fig. 5, the amplification factor is de-
fined as the ratio of the magnitude of a peak with the magnitude of
the previous peak of corresponding sign. The response frequency
is determined from the period between two successive peaks of the
same sign. The amplification factors and response frequencies plot-
ted in Fig. 5 are obtained from the average of the values for the last
positive and negative peak. A value of amplification factor greater
than 1.0 implies flutter. From Fig. 5 the effects of varying dynamic
pressure g and mesh resolution can be clearly seen. As dynamic
pressureis increased, the amplification factor grows and eventually
exceeds 1.0, and the wing begins to flutter. Grid refinement leads

sy
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Fig. 5 Dynamic pressure and frequency for flutter, Mo, = 0.96.

to a reduction in the flutter speed and the corresponding response
frequency.

The flutter points inferred from Fig. 5 are compared with other
computed results** and with the experimental results'® in Table 2.
Alsoincludedin Table 2 are a correspondingset of results computed
with the present scheme using the Euler equations. The flutter speed
index (FSI) is defined as

FSI = (16)

f

b oo Vi
where U/ is the flutter speed, b, is half the root chord, @, is the
primary torsional frequency (second mode), and i is the mass ratio.
Note that o/ @, is referred to as the frequency ratio and is the ratio
of the response frequency to the primary torsional frequency. The
present viscous computations slightly overpredict the experimental
flutter speed index and frequency ratio on the coarser meshes, but
approach the experimental values with mesh refinement. The invis-
cid results agree well with the experimental values on the coarser
meshes, but the comparison degrades with increasing mesh refine-
ment. The solutionson all meshes, however, predictthe flutter values
as well as or better than the solutions in Refs. 3 and 4.

Meo =1.141

The next case computed, M, =1.141, has proved much more
challenging to reproduce the reported experimental flutter beha-
vior>* This case has a shock that is located outboard, on the aft
portion of the wing. The presenceof the shock and the corresponding
shock/boundary-layerinteraction make this a more interesting flow
conditionto compute. Figure 6 shows the time history of the first four
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modes for a dynamic pressure g/ g, = 1.8, where ¢, = 105.3 Ibf/f¢*.
Asinthe M, =0.96 case, the first mode appears to be the dominant
mode, though the higher modes appear to play more of a role for
M., =1.141. For this case, it is also necessary to run significantly
more cycles than for M, =0.96 before a clear determination of
the response is made. In some instances, the amplitude of the first
few cycles computed appeared to be growing though ultimately the
solution was damped. One needs to be cautious, therefore, in trying
toprojectaresultin this situationusingonly a few cyclesofresponse.

The effect of grid resolution on the surface pressure coefficient
for the static initial condition is seen in Fig. 7. The most significant
effect noted is a strengthening and sharpening of the shock wave
on the wing. The corresponding effect on the response of the first

Table 2 Flutter point results, M« = 0.96

Method q/q. FSI o/ 0y
Coarse viscous 1.15 0.333 0.383
Medium viscous 1.12 0.329 0.376
Fine viscous 1.05 0.319 0.364
Coarse inviscid 1.02 0.314 0.371
Medium inviscid 0.96 0.304 0.361
Fine inviscid 0.84 0.285 0.331
Experiment'® 1.0 0.308 0.365
Reference 3 0.89 0.294 0.346
Reference 4 1.47 0.367 0.349

— Mode 1

————— Mode 2

———— - Mode 3

0.1 — — —~ Mode 4

0.05

-0.05

Generalized Displacement
[=]

[N NN NN TN TSN NN TR SO T SO M TN NI A N A N N N

50 100 150 200 250
Nondimensional Time

Fig. 6 Dynamic response of first four modes: M« = 1.141 and ¢/q, =
1.8.

mode is demonstrated in Fig. 8. The solution is seen to grow at a
slower rate as the mesh resolutionis increasedimplying an increase
in the flutter speed. This trend is opposite from the situation for
M, =0.96.

Figure 9 summarizes the results for the viscous computations
at increasing dynamic pressures on the three meshes. Because no
computation was performed for g/q, =1.7 on the fine mesh, the
dashed line represents a best estimate of the shape of the curve for
this grid. Figure 9 demonstrates that the effect of grid resolution is
to increase the flutter speed and frequency for this case. A compar-
ison of the computed viscous flutter values for M, =1.141 with
the experimental values and Navier-Stokes computations of other
researchers is given in Table 3. The Navier-Stokes computations
are seen to overpredictthe experimental flutter speed index and the
frequency ratio. Note, however, that the other computations shown
also overpredict the flutter point for this case. The current compu-
tations lie well within the range of computational results presented
by other authors.

Computations for the M, =1.141 case were repeated using the
Euler equations to assess viscous effects on the predicted flutter
point. The Euler results are seen to give notably higher values for
the flutter speed index and frequency ratio indicating a significant
viscous influence on the flutter point location. This corresponds
with the trend reported in Ref. 3. The computed values of FSI and
frequency ratio are comparable to values reported for other Euler
simulations by Lee-Rausch and Batina® and Farhat and Lesoinne >

Coarse
—————— - Medium
01l ———r Fine

0.05

-0.05

Generalized Displacement
(=]

Lo b e b e e by 1
50 100 150 200
Nondimensional Time

Fig. 8 Effect of grid resolution on mode 1 response: M« =1.141 and
qlq. =1.8.

Medium Coarse

Fig. 7 Effect of grid resolution on the rigid-surface pressure coefficient, M« =1.141.
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Table 3 Flutter point results, M =1.141

Method q/q. FSI o/ o,
Coarse viscous 1.69 0.530 0.591
Medium viscous 1.72 0.534 0.598
Fine viscous 1.76 0.541 0.607
Coarse inviscid 2.12 0.592 0.694
Medium inviscid 2.10 0.591 0.682
Fine inviscid 2.09 0.589 0.669
Four modes 1.77 0.542 0.613
Roe 1.78 0.544 0.604
Transition 30% ¢ 1.75 0.539 0.616
Experiment'® 1.0 0.403 0.459
Reference 3 1.61 0.506 0.521
Reference 4 2.10 0.574 0.597
11
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Fig. 9 Dynamic pressure and frequency for flutter, M =1.141.

Gupta® has reported Euler simulations for which the FSI and fre-
quency ratio predicted compare reasonably with the experimental
values at the M, =1.141 flow condition but are underpredicted
for lower values of Mach number. The trends observed in Gupta’s
simulations appear to be inconsistent with all of the other Euler
simulations reported here.

To investigate the sensitivity of the M, =1.141 solution to var-
ious computational parameters, several limited studies were under-
taken on the coarse mesh. Lee-Rauschand Batina® suggestthatusing
a model with a higher number of modes than the four modes used
in their study may be required at higher Mach numbers. As noted
in Fig. 6, the higher modes show more participationin the response
for the Mo, =1.141 case. The structural model used for the present
computations contained 14 modes. To understand the influence of
this higher mode participation,computations were carried out using
only the first four modes of the model. Figure 10 shows the effect of
number of modes on the response of the first mode. The reduction
in the number of modes has significantly reduced the amplitude and
rate of growth of the oscillationsimplying an increase in the flutter
speed for the computations with fewer modes. This result is con-
firmed in Fig. 11 and Table 3, where the flutter speed and frequency
are seen to be reduced with an increase in the number of modes in
the model. The reduction is not significant enough, however, to ex-
plain the discrepancies between the computations and experiment.
This result highlights the potential shortcomings of using highly
truncated modal models in certain situations.

The present aerodynamic solver has the option of using a third-
order upwind-biased Roe scheme (see Ref. 19). The effect of the
improved accuracy and shock definition of this scheme on the com-
puted results at M, =1.141 is also investigated. A comparison of
the surface pressure coefficient for the initial condition is given in
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Fig. 10 Effect of number of modes used on mode 1 response: M =
1.141 and ¢g/q. = 1.8.
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Fig. 11 Effect of number of nodes on dynamic pressure and frequency
for flutter, M, =1.141.

Fig. 12. A sharpening of the shock and a slight increase in the suc-
tion levels results when the Roe scheme is employed. The effect
on the first mode response (Fig. 13) is to reduce the amplitude and
growthrate of the oscillations. This correspondsto an increasein the
flutter speed and response frequency (Fig. 14 and Table 3), which is
consistent with the trend observed when the grid is refined for the
central difference scheme.

Another possible source for the difference between the exper-
iment and computation at the higher Mach number is transition.
Throughout the experiments, natural boundary-layertransition was
permitted. Therefore, the effect of transition location may play a
role that is not being modeled in any of the computations to date.
This issue has also been raised by Lee-Rausch and Batina.® To in-
vestigate the sensitivity of the computed flutter point to transition
location, computations were performed with the Baldwin-Lomax
model turned off over the first 30% of the wing. Although this may
not exactly model the physical transition process that occurs, the
sensitivity of the solution to transition location may be discerned.
The computed results (Fig. 15 and Table 3) indicate a small increase
in the flutter speed and frequency response. This effect again does
not account for the discrepancy between the computations and the
reported experimental results.
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Fig. 12 Effect of Roe scheme on the rigid-surface pressure coefficient, M =1.141.
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Neither the addition of extra modes in the structural model, nor
the use of the more accurate Roe scheme (or similar grid refine-
ment), nor transition location have provided a complete resolution
to the discrepancies between the experiment and computations at
M., =1.141. Lee-Rausch and Batina® also investigated the effects
of structural damping on the computed flow at M, =1.141. The
small changes in the flutter speed (surprisingly in a destabilizing
sense) they observed with the addition of structural damping is still
not enough to account for the difference between the computations
and experiment.

Further investigationis required to determine adequately the rea-
son for the discrepancy between the experiment and computations
at M., =1.141. Because most of the computations discussed can
adequately predict the flutter characteristicsat subsonic Mach num-
bers, it seems that the structural properties of the wing are be-
ing modeled satisfactorily. The problem, therefore, appears to be
an inability to model correctly the physical processes occurring
in the flutter experiment at supersonic Mach numbers. The ex-
act cause of the problem remains difficult to determine because
only minimal information on the experimental flowfield itself is
available. As always with turbulent flows, the choice of turbu-
lence model can be a key element in correctly simulating the flow.
In this situation the standard Baldwin-Lomax turbulence model
may be inadequate for capturing the complex physics associated
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with the shock-wave/boundary-layerinteraction that occurs. Alter-
nately, the actual physical conditions in the experiment may not be
properly represented in the computations. At the supersonic Mach
numbers, for instance, accounting for the presence of the wind-
tunnel walls may play an importantrole in matching the experimen-
tal flutter values. Finally, in the supersonic flow region, significant
changes in flutter speed and frequency can occur for small changes
in Mach number. Therefore, any small experimental error in Mach
number reported could lead to significant differences between the
computed and experimental flutter properties.

Conclusions

This paper has presented computations using a recently devel-
oped fully implicit, aeroelastic Navier-Stokes solver. This technique
achieves implicit coupling of the fluids and structures via a subiter-
ation strategy. Flutter computations on the AGARD 445.6 standard
aeroelasticwing were performed for two Machnumbers, M,, =0.96
and 1.141.

For the M, =0.96 case, the present viscous computations pre-
dict the flutter point well for all grids considered. The effect of
improved grid resolution is to reduce the flutter speed providing
better agreement between experiment and computation. Computa-
tions using an Euler solver compared well on the coarser meshes,
but the comparison degraded with mesh refinement.

The M, =1.141 case has a shock located outboard on the aft
portion of the wing. Whereas the present viscous computations sig-
nificantly overpredictthe experimental flutter point for this case, the
computations are consistent with other computational results pre-
sented for the same case. Computations for the present paper were
performed on grids significantly finer than previous works. The ef-
fect of grid refinement on the viscous solutions was to increase
the flutter speed slightly. Euler computations for the M, =1.141
case showed significant differences from the viscous solutions. The
flutter speeds and frequency response were higher than the viscous
values and further from the reported experimental values. Viscous
effects are clearly playing an important role in this case.

Solutions for this case were also obtained using both 4 and 14
modes in the structural model. Although increasing the number of
modes in the structural model reduces the predicted flutter speed
at this Mach number, the reduction is not enough to account for
the discrepancies between the computations and experiment. The
computations were repeatedusing a third-order,upwind-biasedRoe
scheme. The trends observed using the Roe scheme were consistent
with those observed when grid refinement was performed. Finally,
the location of the computational transition location was moved
downstream from the leading edge to the 30% chord location. Only
a minimal effect of this change was observed in the flutter response.
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